Q.P.Code: 013979

10

05

(3 Hours) Total Marks: 80

- N.B.: (1) Attempt any **four** questions.
 - (2) Assumptions made should be **clearly** stated.
 - (3) Use log/semi log paper is permited.
- 1. (a) Obtain the transfer function for the block diagram shown in figure below using block diagram reduction technique.

(b) Find state - space representation of the transfer function shown below.

2. (a) Obtain a state-space representation of the mechanical system shown in figure below, where u_1 and u_2 are the inputs and y_1 and y_2 are the outputs.

- (b) [1] Explain state of dynamic system, state variable, state space, state equation and obtained output equation involved in state space modeling
 - [2] Distinguish between modern control theory and conventional control theory
- 3. (a) [1] Explain Lyapunov stability theory. 05
 - [2] Explain the common nonlinearities in control systems. 05
 - (b) Find the transfer functions for the translational mechanical system shown in figure below.

4. (a) For particular unity feedback system

$$G(s) = \frac{64(s+2)}{s(s+0.5)(s^2+3.2s+64)}.$$

Sketch the bode plot. Determine the gain margin, phase margin, gain crossover frequency and phase crossover frequency. Comment on stability.

- Write note on dynamic mathematical modeling of liquid level system having two tanks 10 in series.
- (a) For a unity feedback system the open loop transfer function is given by 10 $G(s) = \frac{k}{s(s+2)(s^2+6s+25)}$ Sketch the root locus and find the value of k at which system becomes unstable.
 - 10 (b) The open loop transfer function of a unity feedback system is given by $G(s) = \frac{k}{s(1+sT_1)(1+sT_2)}$. Apply Routh – Hurwitz criterion, determine the value of kin terms of T_1 and T_2 for the system to be stable.
- 6. (a) For a certain control system 10 $G(s)H(s) = \frac{K}{s(s+2)(s+10)}$ Sketch the Nyquist plot and hence calculate the range of values of K for stability.
 - Determine the value of k such that the damping ratio ζ is 0.5. Then obtain the rise 10 time t_r , peak time t_p , maximum overshoot M_p , and settling time t_s in the unit-step response.

